EXCHANGEABLE RANDOM PRIMITIVES
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ABSTRACT. Exchangeable random primitives (XRPs) are a crucial, but undocumented, class of
constructs in the probabilistic programming language Church. We give a rigorous definition for
the samplers of XRPs, and give a representation theorem characterizing their essential form and
conditional independence structure. We place semantic questions surrounding exchangeable random
primitives in the context of a line of research in programming languages involving purity and
referential transparency.

1. INTRODUCTION

In the view of the authors, one of the key contributions of the probabilistic programming language
Church is a class of constructs, called exchangeable random primitives (XRPs), that can be used
to extend the language with stochastic primitives whose implementations use stateful computation.
Surprisingly, XRPs are not mentioned in the paper introducing the language [GMRBTO08] and are
buried in the original implementation, dubbed MIT-Church.

Despite being reimplemented and generalized in several languages descending from Church, XRPs
are poorly documented and, as a result, poorly understood. XRPs, as defined in MIT-Church, are
composed of three parts: a sampler, an unsampler, and a scorer. Informally, a sampler takes as
inputs one or more parameters, and returns an output, which may have been generated stochastically.
Given any sequence of calls to the sampler, the scorer must produce a “log probability density” for
all the input-output pairs, unless they have been “forgotten” (unsampled) by the unsampler. Finally,
the input—output pairs must be “exchangeable”. The statement closest to, but still not quite, a
formal definition appears in Mansinghka, Selsam, and Perov [MSP14]:

“The formal requirement is that the cumulative log probability density of any sequence
of input-output pairs is invariant under permutation.”

The three parts of an XRP may maintain shared state in order to meet the specification. See also the
proposal that exchangeability provides a notion of purity for probabilistic programs in [RMGTO08]
and [Man09, §2.2.1], and the descriptions of XRPs in [Wul3, §4]. As described in [RMGTO08], it is
natural to use XRPs to represent various objects occurring in nonparametric Bayesian statistics.
Support for other particular XRPs such as memoization and gensym appears in some dialects of
Church, and also in Hansei [KS09]. Venture [MSP14] introduces stochastic procedures which include
XRPs as a special case.

We give a rigorous definition for a sampler, leaving the definition of an unsampler and scorer to
future work. Even focusing on the sampler, there is interesting mathematical structure to characterize
and some clarity can be brought to the relationship between XRPs and exchangeable random
structures. We also give a precise representation theorem that explains the way in which XRPs
behave like ordinary procedures in Church.

While we believe the joint characterization of a sampler and unsampler is straightforward, there
appears to be some intrinsic difficulties with the idea that a scorer reports a log probability density.
In particular, on the natural product space of input—output pairs, one can define samplers such that
there is no dominating product measure, and so the obvious notion of a probability density need not

1 HARVARD UNIVERSITY; 2 GAMALON LABS; 3 UNIVERSITY OF TORONTO.
E-mail addresses: nate@math.harvard.edu, cameron.freer@gamalon.com, droy@utstat.toronto.edu.

1



EXCHANGEABLE RANDOM PRIMITIVES 2

for i in range(10):
Sum[i] = 1.0; Total[i] = i+1

def next_draw(i):
global Sum, Total
y = bernoulli(Sum[i]/Totall[il)
Sum[i] += y; Totall[i] += 1
return y

FiGURE 1. Example of a random procedure whose outputs are exchangeable.

even exist. On the other hand, it holds trivially that the constant function 1 is a probability density
with respect to the probability distribution of the input—output pairs themselves, yet every existing
implementation of an XRP-based language fails to produce correct behavior if this scoring function
is used. It is an open problem to resolve this issue, e.g., by giving rigorous sufficient conditions on
the scorer in order to produce correct behavior in a reference implementation.

Functional programming languages [Lon99] and notions of purity [Sab98] have been explored
primarily in the deterministic setting, with some extensions to nondeterministic programming
languages in [SS92] and [FKS11]. XRPs might provide a basis for extending concepts such as
referential transparency, definiteness, extensionality, and unfoldability [SS90] to the probabilistic
setting. In particular, because the order of evaluation of a sequence of calls to an XRP does
not affect the resulting joint distribution, XRPs constitute a more general class than the naive
extension of functions to the probabilistic setting given by random probability kernels (whose
repeated evaluations yield conditionally i.i.d. sequences), while still preserving some analogues of
definiteness and extensionality.

2. EXAMPLE OF AN EXCHANGEABLE RANDOM PROCESSES USING STATE

Consider the example in Fig. 1. This Python code block describes an array of Pélya urn processes
indexed by 0,...,9. In this example, the state space S consists of possible values of the variables Sum
and Total, and the parameter space X is {0,...,9}.

This example uses state in a nontrivial way, but there is always an alternative way of expressing the
same distribution on return values without making use of state. (For this example, this furthermore
has a nice form given by the beta-bernoulli process.)

3. FORMALIZING XRPs

Definition 3.1. Let X, Y, and S be spaces. A stateful kernel from X to Y with state in S is a
family P = (Pys)(2,s)exxs of probability measures on ¥ x S.

Let X, Y, and S be spaces, and let P be a stateful kernel from X to Y with state in S. For every
initial state sg € S and sequence of inputs z = (x1,...,zx) € X*, let Qs,,» be the law of the Markov
chain (s,,,yn :n =1,...,k) given by Let Qf, , be the marginal law of the sequence (y1,...,yx). The
following definition captures the property that repeated sampling from a stateful kernel does not

depend on the order of the evaluation.

Definition 3.2. A stateful sampler P is functional when, for every k € N, sg € S, z = (z1,...,2k) €
X", and permutation o of [k] := {1,...,k}, we have Q, , 0 (7)"' = Q. 400+ i-€., the G-pushforward

of the Qs ,-distribution of the sequence (yi,...,yx) is the same as the Qs zor-distribution of the
sequence (y1,. .., Yk)-

Remark 3.3. When X is a one-point space, then P is functional if and only if (y1,...,yx) is
exchangeable in the ordinary sense of a finite sequence of random variables. 5
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Remark 3.4. When S is a one-point space, then P is functional if and only if for every sequence
x=(x1,...,28) € X*_ the sequence y = (y1,...,yr) consists of independent random variables such
that for every constant subsequence of z, the corresponding subsequence of y is i.i.d. <

The following is a standard result in probability theory.

Theorem 3.5 (Doob). Let f : [0,1] x X — My(Y). Then there exists a function samp(f) :
[0,1] x X x [0,1] = Y such that, for all « € [0,1], we have samp(f)(c,x,U) ~ f(a,z) whenever U
s uniformly distributed.

Using this, we can now characterize functional, stateful kernels in terms of sampling.

Theorem 3.6. Let X be countable and let P be a functional, stateful kernel from X to'Y with state
in S. Then there exists a function f :[0,1] x X — My (Y) such that, for every x = (x1,...,2) € X*,
the sequence

(samp(f)(U, z1,U1),...,samp(f) (U, xx, Ug)) (1)

has distribution Q’mc when U, Uy, ..., Uy are i.i.d. uniform random variables.
There is an alternative view on this result, which we now state in terms of probability kernels.

Theorem 3.7. Let X be countable and let P be a functional, stateful kernel from X to'Y with state
in S. Then there exists a function f : [0,1] x X — My(Y) such that, for every x = (x1,...,x1) € X*,

the sequence of random variables yi,...,yx, defined to be conditionally independent given a uniform
random variable U and distributed according to
yi | U ~ f(Ux5),  forj €kl (2)

has distribution Q .

Remark 3.8. For countable X (and some unstated but reasonable regularity on Y'), the proof can be
reduced to an application of de Finetti’s theorem. To prove the theorem for a continuum-size space
X, some care would be required. It seems that one would have to require that X be separable, and
that the distribution Q/s,m depend at least in a measurable way on x. <

Remark 3.9. By de Finetti’s theorem, every exchangeable sequence is a mixture of i.i.d. sequences.
Furthermore, a computable extension of de Finetti’s theorem (see [FR10] and [FR12]) shows that the
representations in Theorems 3.6 and 3.7 can be computed when X = {1} and Y = R (which can be
straightforwardly extended to the case where X is countable and Y is a computable Polish space). <
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